Robust portfolio asset allocation and risk measures
نویسندگان
چکیده
Many financial optimization problems involve future values of security prices, interest rates and exchange rates which are not known in advance, but can only be forecast or estimated. Several methodologies have therefore been proposed to handle the uncertainty in financial optimization problems. One such methodology is Robust Statistics, which addresses the problem of making estimates of the uncertain parameters that are insensitive to small variations. A different way to achieve robustness is provided by Robust Optimization, which looks for solutions that will achieve good objective function values for the realization of the uncertain parameters in given uncertainty sets. Robust Optimization thus offers a vehicle to incorporate an estimation of uncertain parameters into the decision making process. This is true, for example, in portfolio asset allocation. Starting with the robust counterparts of the classical mean-variance and minimum-variance portfolio optimization problems, in this paper we review several mathematical models, and related algorithmic approaches, that have recently been proposed to address uncertainty in portfolio asset allocation, focusing on Robust Optimization methodology. We also give an overview of some of the computational results that have been obtained with the described approaches. In addition we analyze the relationship between the concepts of robustness and convex risk measures.
منابع مشابه
A Robust Knapsack Based Constrained Portfolio Optimization
Many portfolio optimization problems deal with allocation of assets which carry a relatively high market price. Therefore, it is necessary to determine the integer value of assets when we deal with portfolio optimization. In addition, one of the main concerns with most portfolio optimization is associated with the type of constraints considered in different models. In many cases, the resulted p...
متن کاملA two-stage robust model for portfolio selection by using goal programming
In portfolio selection models, uncertainty plays an important role. The parameter’s uncertainty leads to getting away from optimal solution so it is needed to consider that in models. In this paper we presented a two-stage robust model that in first stage determines the desired percentage of investment in each industrial group by using return and risk measures from different industries. One rea...
متن کاملOptimal Portfolio Allocation based on two Novel Risk Measures and Genetic Algorithm
The problem of optimal portfolio selection has attracted a great attention in the finance and optimization field. The future stock price should be predicted in an acceptable precision, and a suitable model and criterion for risk and the expected return of the stock portfolio should be proposed in order to solve the optimization problem. In this paper, two new criterions for the risk of stock pr...
متن کاملUsing MODEA and MODM with Different Risk Measures for Portfolio Optimization
The purpose of this study is to develop portfolio optimization and assets allocation using our proposed models. The study is based on a non-parametric efficiency analysis tool, namely Data Envelopment Analysis (DEA). Conventional DEA models assume non-negative data for inputs and outputs. However, many of these data take the negative value, therefore we propose the MeanSharp-βRisk (MShβR) model...
متن کاملOn Robust Multi-period Pre-commitment and Time-consistent Mean-variance Portfolio Optimization
We consider robust pre-commitment and time-consistent mean-variance optimal asset allocation strategies, that are required to perform well also in a worst-case scenario regarding the development of the asset price. We show that worst-case scenarios for both strategies can be found by solving a specific equation each time step. In the unconstrained asset allocation case, the robust pre-commitmen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- 4OR
دوره 8 شماره
صفحات -
تاریخ انتشار 2010